[Study on the method of polysomnography sleep stage staging based on attention mechanism and bidirectional gate recurrent unit]

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):35-43. doi: 10.7507/1001-5515.202208017.
[Article in Chinese]

Abstract

Polysomnography (PSG) monitoring is an important method for clinical diagnosis of diseases such as insomnia, apnea and so on. In order to solve the problem of time-consuming and energy-consuming sleep stage staging of sleep disorder patients using manual frame-by-frame visual judgment PSG, this study proposed a deep learning algorithm model combining convolutional neural networks (CNN) and bidirectional gate recurrent neural networks (Bi GRU). A dynamic sparse self-attention mechanism was designed to solve the problem that gated recurrent neural networks (GRU) is difficult to obtain accurate vector representation of long-distance information. This study collected 143 overnight PSG data of patients from Shanghai Mental Health Center with sleep disorders, which were combined with 153 overnight PSG data of patients from the open-source dataset, and selected 9 electrophysiological channel signals including 6 electroencephalogram (EEG) signal channels, 2 electrooculogram (EOG) signal channels and a single mandibular electromyogram (EMG) signal channel. These data were used for model training, testing and evaluation. After cross validation, the accuracy was (84.0±2.0)%, and Cohen's kappa value was 0.77±0.50. It showed better performance than the Cohen's kappa value of physician score of 0.75±0.11. The experimental results show that the algorithm model in this paper has a high staging effect in different populations and is widely applicable. It is of great significance to assist clinicians in rapid and large-scale PSG sleep automatic staging.

多导睡眠图(PSG)监测是临床上用于诊断诸如失眠、呼吸暂停等疾病的重要手段。为了解决以手工逐帧视觉判断PSG进行睡眠障碍患者睡眠阶段分期耗时长、耗费精力大等问题,本文提出一种结合卷积神经网络(CNN)与双向门控循环神经网络 (Bi GRU)的深度学习算法模型,并设计了一种动态稀疏性自注意力机制以解决门控循环单元(GRU)网络对长距离信息难以获得准确向量表示的问题。本文采集来自上海精神卫生中心143例睡眠障碍患者整晚PSG数据并结合开源数据集153例睡眠障碍患者整晚PSG数据,选取其中的6个脑电(EEG)信号通道、2个眼电(EOG)信号通道与单个下颌肌电(EMG)信号通道等共9个通道的电生理通道信号进行模型训练与测试评估。经交叉验证后得到的分期准确率为(84.0±2.0)%,一致性检验值为0.77±0.50,优于医师间评分的一致性检验值0.75±0.11。实验结果表明,本文算法模型在不同人群中具有较高的分期效果并具有普适性,对于协助临床医师进行快速、大规模PSG睡眠自动分期具有重要研究意义。.

Keywords: Bidirectional gate recurrent unit; Polysomnography; Self-attention mechanism; Sleep stage.

Publication types

  • English Abstract

MeSH terms

  • Algorithms
  • China
  • Humans
  • Polysomnography
  • Sleep Stages*
  • Sleep*

Grants and funding

上海市申康发展中心重大临床研究项目-青年项目(SHDC2020CR4074,SHDC12016205);上海市科委科技创新行动计划(20Y11906600);上海理工大学医工交叉项目(1021308424); 上海市精神卫生中心睡眠障碍特色学科(2017-TSXK-02)