Background: Owing to successful cloning of wheat functional genes in recent years, more traits can be selected by diagnostic markers, and consequently, effective molecular markers will be powerful tools in wheat breeding programs.
Results: The present study proposed a cost-effective duplex Kompetitive Allele Specific PCR (dKASP) marker system that combined multiplex PCR and KASP™ technology to yield twice the efficiency at half the cost compared with the common KASP™ markers and provide great assistance in breeding selection. Three dKASP markers for the major genes controlling plant height (Rht-B1/Rht-D1), grain hardness (Pina-D1/Pinb-D1), and high-molecular-weight glutenin subunits (Glu-A1/Glu-D1) were successfully developed and applied in approved wheat varieties growing in the middle and lower reaches of the Yangtze River and advanced lines from our breeding program. Three markers were used to test six loci with high efficiency. In the approved wheat varieties, Rht-B1b was the most important dwarfing allele, and the number of accessions carrying Pinb-D1b was much greater than that of the accessions carrying Pina-D1b. Moreover, the number of accessions carrying favorable alleles for weak-gluten wheat (Null/Dx2) was much greater than that of the accessions carrying favorable alleles for strong-gluten wheat (Ax1 or Ax2*/Dx5). In the advanced lines, Rht-B1b and Pinb-D1b showed a significant increase compared with the approved varieties, and the strong-gluten (Ax1 or Ax2*/Dx5) and weak-gluten (Null/Dx2) types also increased.
Conclusion: A cost-effective dKASP marker system that combined multiplex PCR and KASP™ technology was proposed to achieve double the efficiency at half the cost compared with the common KASP™ markers. Three dKASP markers for the major genes controlling PH (Rht-B1/Rht-D1), GH (Pina-D1/Pinb-D1), and HMW-GS (Glu-A1/Glu-D1) were successfully developed, which would greatly improve the efficiency of marker-assisted selection of wheat.
Keywords: Favorable allele; Kompetitive Allele Specific PCR; Marker-assisted selection; Wheat breeding.
© 2023. The Author(s).