Development of a Simultaneous Liquid Chromatography-Tandem Mass Spectrometry Analytical Method for Urinary Endogenous Substrates and Metabolites for Predicting Cytochrome P450 3A4 Activity

Biol Pharm Bull. 2023;46(3):455-463. doi: 10.1248/bpb.b22-00840.

Abstract

CYP3A4, which contributes to the metabolism of more than 30% of clinically used drugs, exhibits high variation in its activity; therefore, predicting CYP3A4 activity before drug treatment is vital for determining the optimal dosage for each patient. We aimed to develop and validate an LC-tandem mass spectrometry (LC-MS/MS) method that simultaneously measures the levels of CYP3A4 activity-related predictive biomarkers (6β-hydroxycortisol (6β-OHC), cortisol (C), 1β-hydroxydeoxycholic acid (1β-OHDCA), and deoxycholic acid (DCA)). Chromatographic separation was achieved using a YMC-Triart C18 column and a gradient flow of the mobile phase comprising deionized water/25% ammonia solution (100 : 0.1, v/v) and methanol/acetonitrile/25% ammonia solution (50 : 50 : 0.1, v/v/v). Selective reaction monitoring in the negative-ion mode was used for MS/MS, and run times of 33 min were used. All analytes showed high linearity in the range of 3-3000 ng/mL. Additionally, their concentrations in urine samples derived from volunteers were analyzed via treatment with deconjugation enzymes, ignoring inter-individual differences in the variation of other enzymatic activities. Our method satisfied the analytical validation criteria under clinical conditions. Moreover, the concentrations of each analyte were quantified within the range of calibration curves for all urine samples. The conjugated forms of each analyte were hydrolyzed to accurately examine CYP3A4 activity. Non-invasive urine sampling employed herein is an effective alternative to invasive plasma sampling. The analytically validated simultaneous quantification method developed in this study can be used to predict CYP3A4 activity in precision medicine and investigate the potential clinical applications of CYP3A4 biomarkers (6β-OHC/C and 1β-OHDCA/DCA ratios).

Keywords: CYP3A4; LC-tandem mass spectrometry; biomarker; pharmacokinetics; urine.

MeSH terms

  • Ammonia
  • Calibration
  • Chromatography, Liquid
  • Cytochrome P-450 CYP3A / metabolism
  • Humans
  • Tandem Mass Spectrometry*

Substances

  • Ammonia
  • Cytochrome P-450 CYP3A