Glioma genetic profiles associated with electrophysiologic hyperexcitability

medRxiv [Preprint]. 2023 Feb 24:2023.02.22.23285841. doi: 10.1101/2023.02.22.23285841.

Abstract

Distinct genetic alterations determine glioma aggressiveness, however the diversity of somatic mutations contributing to peritumoral hyperexcitability and seizures is uncertain. In a large cohort of patients with sequenced gliomas (n=1716), we used discriminant analysis models to identify somatic mutation variants associated with electrographic hyperexcitability in a subset with continuous EEG recording (n=206). Overall tumor mutational burdens were similar between patients with and without hyperexcitability. A cross-validated model trained exclusively on somatic mutations classified the presence or absence of hyperexcitability with an overall accuracy of 70.9%, and improved estimates of hyperexcitability and anti-seizure medication failure in multivariate analysis incorporating traditional demographic factors and tumor molecular classifications. Somatic mutation variants of interest were also over-represented in patients with hyperexcitability compared to internal and external reference cohorts. These findings implicate diverse mutations in cancer genes associated with the development of hyperexcitability and response to treatment.

Publication types

  • Preprint