Quadriceps Weakness is Associated with Neuroplastic Changes Within Specific Corticospinal Pathways and Brain Areas After Anterior Cruciate Ligament Reconstruction: Theoretical Utility of Motor Imagery-Based Brain-Computer Interface Technology for Rehabilitation

Arthrosc Sports Med Rehabil. 2022 Dec 28;5(1):e207-e216. doi: 10.1016/j.asmr.2022.11.015. eCollection 2023 Feb.

Abstract

Persistent quadriceps weakness is a problematic sequela of anterior cruciate ligament reconstruction (ACLR). The purposes of this review are to summarize neuroplastic changes after ACL reconstruction; provide an overview of a promising interventions, motor imagery (MI), and its utility in muscle activation; and propose a framework using a brain-computer interface (BCI) to augment quadriceps activation. A literature review of neuroplastic changes, MI training, and BCI-MI technology in postoperative neuromuscular rehabilitation was conducted in PubMed, Embase, and Scopus. Combinations of the following search terms were used to identify articles: "quadriceps muscle," "neurofeedback," "biofeedback," "muscle activation," "motor learning," "anterior cruciate ligament," and "cortical plasticity." We found that ACLR disrupts sensory input from the quadriceps, which results in reduced sensitivity to electrochemical neuronal signals, an increase in central inhibition of neurons regulating quadriceps control and dampening of reflexive motor activity. MI training consists of visualizing an action, without physically engaging in muscle activity. Imagined motor output during MI training increases the sensitivity and conductivity of corticospinal tracts emerging from the primary motor cortex, which helps "exercise" the connections between the brain and target muscle tissues. Motor rehabilitation studies using BCI-MI technology have demonstrated increased excitability of the motor cortex, corticospinal tract, spinal motor neurons, and disinhibition of inhibitory interneurons. This technology has been validated and successfully applied in the recovery of atrophied neuromuscular pathways in stroke patients but has yet to be investigated in peripheral neuromuscular insults, such as ACL injury and reconstruction. Well-designed clinical studies may assess the impact of BCI on clinical outcomes and recovery time. Quadriceps weakness is associated with neuroplastic changes within specific corticospinal pathways and brain areas. BCI-MI shows strong potential for facilitating recovery of atrophied neuromuscular pathways after ACLR and may offer an innovative, multidisciplinary approach to orthopaedic care.

Level of evidence: V, expert opinion.