Plasticity in airway smooth muscle differentiation during mouse lung development

Dev Cell. 2023 Mar 13;58(5):338-347.e4. doi: 10.1016/j.devcel.2023.02.002. Epub 2023 Mar 2.

Abstract

It has been proposed that smooth muscle differentiation may physically sculpt airway epithelial branches in mammalian lungs. Serum response factor (SRF) acts with its co-factor myocardin to activate the expression of contractile smooth muscle markers. In the adult, however, smooth muscle exhibits a variety of phenotypes beyond contractile, and these are independent of SRF/myocardin-induced transcription. To determine whether a similar phenotypic plasticity is exhibited during development, we deleted Srf from the mouse embryonic pulmonary mesenchyme. Srf-mutant lungs branch normally, and the mesenchyme displays mechanical properties indistinguishable from controls. scRNA-seq identified an Srf-null smooth muscle cluster, wrapping the airways of mutant lungs, which lacks contractile smooth muscle markers but retains many features of control smooth muscle. Srf-null embryonic airway smooth muscle exhibits a synthetic phenotype, compared with the contractile phenotype of mature wild-type airway smooth muscle. Our findings identify plasticity in embryonic airway smooth muscle and demonstrate that a synthetic smooth muscle layer promotes airway branching morphogenesis.

Keywords: mechanobiology; morphodynamics; stiffness.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Differentiation
  • Lung / metabolism
  • Mammals / metabolism
  • Mice
  • Muscle Contraction* / physiology
  • Muscle, Smooth*
  • Myocytes, Smooth Muscle / metabolism
  • Serum Response Factor / metabolism

Substances

  • Serum Response Factor