Background aims: Sepsis is a potentially life-threatening disease that results from a severe systemic inflammatory response due to infection. Mesenchymal stromal cell-derived small extracellular vesicles (MSC sEVs) are able to transfer bioactive molecules and have been demonstrated to play an important role in the pathophysiological process of sepsis. Herein the authors aimed to investigate the potential role and downstream molecular mechanism of MSC sEVs in sepsis.
Methods: MSC sEVs were acquired by ultracentrifugation and then injected into a cecal ligation and puncture mouse model. The efficacy of MSC sEVs in both in vitro and in vivo models of sepsis was evaluated.
Results: MSC sEV therapy improved survival, reduced sepsis-induced inflammation, attenuated pulmonary capillary permeability and improved liver and kidney function in septic mice. In addition, the authors found that microRNA-21a-5p (miR-21a-5p) was highly enriched in MSC sEVs, could be transferred to recipient cells, inhibited inflammation and increased survival in septic mice. Furthermore, the authors demonstrated that MSC sEV miR-21a-5p suppressed inflammation by targeting toll-like receptor 4 and programmed cell death 4. The therapeutic efficacy of MSC sEVs was partially abrogated by transfection with miR-21a-5p inhibitors.
Conclusions: Collectively, the authors' data suggest that miR-21a-5p-bearing MSC sEVs may be a prospective and effective sepsis therapeutic strategy.
Keywords: inflammation; mesenchymal stromal cells; microRNA-21a-5p; sepsis; small extracellular vesicles.
Copyright © 2023 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.