Background: Both air pollution and noise exposures have separately been shown to affect cognitive impairment. Here, we examine how air pollution and noise exposures interact to influence the development of incident dementia or cognitive impairment without dementia (CIND).
Methods: We used 1,612 Mexican American participants from the Sacramento Area Latino Study on Aging conducted from 1998 to 2007. Air pollution (nitrogen dioxides, particulate matter, ozone) and noise exposure levels were modeled with a land-use regression and via the SoundPLAN software package implemented with the Traffic Noise Model applied to the greater Sacramento area, respectively. Using Cox proportional hazard models, we estimated the hazard of incident dementia or CIND from air pollution exposure at the residence up to 5-years prior to diagnosis for the members of each risk set at event time. Further, we investigated whether noise exposure modified the association between air pollution exposure and dementia or CIND.
Results: In total, 104 incident dementia and 159 incident dementia/CIND cases were identified during the 10 years of follow-up. For each ∼2 µg/m3 increase in time-varying 1- and 5-year average PM2.5 exposure, the hazard of dementia increased 33% (HR = 1.33, 95%CI: 1.00, 1.76). The hazard ratios for NO2-related dementia/CIND and PM2.5-related dementia were stronger in high-noise (≥65 dB) exposed than low-noise (<65 dB) exposed participants.
Conclusion: Our study indicates that PM2.5 and NO2 air pollution adversely affect cognition in elderly Mexican Americans. Our findings also suggest that air pollutants may interact with traffic-related noise exposure to affect cognitive function in vulnerable populations.
Keywords: Air pollution; Cognitive impairment; Dementia; Nitrogen dioxide; Noise; Ozone; Particulate matter.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.