Background: The tumor microenvironment (TME) of pancreatic cancer is complex. which forms forms a microenvironment with high immunosuppression, ischemia and hypoxia, which promotes tumor proliferation and migration, inhibit the anti-tumor immune response. NOX4 plays an important role in tumor microenvironment and has a significant relationship with the occurrence, development and drug resistance of tumor.
Methods: Firstly, NOX4 expression in pancreatic cancer tissues under different pathological conditions was detected by applying immunohistochemical staining of tissue microarray (TMA). Transcriptome RNA sequencing data and clinical data of 182 pancreatic cancer samples were downloaded and collated from the UCSC xena database. 986 NOX4-related lncRNAs were filtered by Spearman correlation analysis. prognosis-related NOX4-related lncRNAs and NRlncSig Score were finally obtained by univariate and multivariate Cox regression with Least Absolute Shrinkage and Selection Operator (Lasso) analysis in pancreatic cancer patients. we plotted Kaplan -Meier and time-dependent ROC curves (ROC) to assess the validity in predicting the prognosis of pancreatic cancer. The ssGSEA analysis was applied to explore the immune microenvironment of pancreatic cancer patients as well as to discuss the immune cells and immune status separately.
Results: We found that a mature tumor marker, NOX4, play different roles in different clinical subgroups by immunohistochemical analysis and clinical data. Finally, 2 NOX4-related lncRNAs were determined by least absolute shrinkage and selection operator (LASSO) analysis, univariate Cox analysis and multivariate COX analysis. The ROC curve and DCA curve showed that NRS Score had better predictive ability than independent prognosis-related lncRNA and other clinicopathologic indicators. We obtained the relative abundance of 28 infiltrating immune cells by ssGSEA analysis and found a significant positive correlation between the abundance of anti-tumor immune cells and tumor-promoting immune cells in the risk-classified microenvironment. No matter NRS Score or AC092667.2, RP11-349A8.3 was significantly correlated with immune infiltrating cells. Meanwhile, the IC50 of conventional chemotherapeutic agents in high-score group were significantly lower than those in low-score group.
Conclusion: As a mature tumor marker, NOX4-related lncRNAs provide new research strategies for prognostic evaluation, molecular mechanism and clinical treatment of pancreatic cancer.
Keywords: AC092667.2; NOX4; RP11-349A8.3; immune subtype; infiltrating immune cells; lncRNAs; pancreatic cancer; prognostic model.
Copyright © 2023 Zhao, He, Pan, Ye, Liu, Mou and Fu.