mNGS facilitates the accurate diagnosis and antibiotic treatment of suspicious critical CNS infection in real practice: A retrospective study

Open Life Sci. 2023 Mar 3;18(1):20220578. doi: 10.1515/biol-2022-0578. eCollection 2023.

Abstract

Whether metagenomic next-generation sequencing (mNGS) could benefit patients with suspected severe central nervous system (CNS) infection in terms of diagnosis and antibiotic treatment remains unknown. We retrospectively analyzed 79 patients with suspected CNS infection and undertook mNGS. The value of mNGS was investigated in terms of identification of pathogen and guidance for the adjustment of antibiotic treatment. The relationship between the time of initiating mNGS since onset and the Glasgow Outcome Scale (GOS) score after 90-day follow-up were analyzed. Fifty out of 79 cases with suspicious severe CNS infection were finally diagnosed. Despite previous routine laboratory tests, mNGS further promoted the accurate identification of pathogens in 23 cases (47.9%). The sensitivity, specificity, and accuracy of mNGS test in this study were 84.0, 79.3, and 82.3%, respectively. Furthermore, mNGS facilitated the adjustment of empirical antibiotic treatments in 38 cases (48.1%). The time of taking mNGS since onset had an insignificant weak positive correlation with GOS after 90-day follow-up (r = -0.73, P = 0.08). mNGS facilitated the accurate identification of pathogens in suspicious severe CNS infections and promoted the accurate antibiotic therapy even empirical antibiotics were administrated. It should be taken as early as possible to improve the clinical outcome of patients with suspicious severe CNS infection.

Keywords: accurate adjustment; empirical antibiotic treatment; mNGS; pathogen identification; severe CNS infection.