A family of CuI-based 1D polymers showing colorful short-lived TADF and phosphorescence induced by photo- and X-ray irradiation

Dalton Trans. 2023 Mar 28;52(13):4017-4027. doi: 10.1039/d3dt00035d.

Abstract

Exploiting 2-(alkylsulfonyl)pyridines as 1,3-N,S-ligands, herein we have constructed 1D CuI-based coordination polymers (CPs) bearing unprecedented (CuI)n chains and possessing remarkable photophysical properties. At room temperature, these CPs show efficient TADF, phosphorescence or dual emission in the deep-blue to red range with outstandingly short decay times of 0.4-2.0 μs and good quantum performance. Owing to great structural diversity, the CPs demonstrate a variety of emissive mechanisms, spanning from TADF of 1(M + X)LCT type to 3CC and 3(M + X)LCT phosphorescence. Moreover, the designed compounds emit strong X-ray radioluminescence with the quantum efficiency of up to an impressive 55% relative to all-inorganic BGO scintillators. The presented findings push the boundaries in designing TADF and triplet emitters with very short decay times.