The increased use of the stimulant drug, 3,4-methylenedioxymethamphetamine (MDMA), more commonly known as Ecstasy, Molly or X, has been linked to the development of life-threatening hyperthermia in human and animal models. The current study aimed to investigate the role of the gut-adrenal axis in MDMA-induced hyperthermia by assessing the influence of the acute exogenous supplementation with norepinephrine (NE) or corticosterone (CORT) to adrenalectomized (ADX) rats following MDMA administration. MDMA (10 mg/kg, sc) resulted in significant increase of body temperature in SHAM animals compared to ADX animals at 30-, 60- and 90-min timepoints post-MDMA treatment. The attenuated MDMA-mediated hyperthermic response seen in ADX animals was partially restored by the exogenous administration of NE (3 mg/kg, ip) or CORT (3 mg/kg, ip) 30 min after MDMA treatment. Additionally, 16 S rRNA analysis revealed distinct changes in the gut microbiome composition and diversity notable by the higher abundance of minor phyla Actinobacteria, Verrucomicrobia and Proteobacteria in ADX rats compared to control and SHAM rats. Furthermore, MDMA administration resulted in marked changes in the dominant phyla Firmicutes and Bacteroidetes and minor phyla Actinobacteria, Verrucomicrobia and Proteobacteria in ADX animals. The most notable changes in the gut microbiome upon CORT treatment were reported with increase in Bacteroidetes and decrease in Firmicutes phyla whereas NE treatment resulted in increase in Firmicutes and decrease in Bacteroidetes and Proteobacteria post treatment. These results suggest a correlation between the sympathoadrenal axis, gut microbiome structure and diversity and MDMA-mediated hyperthermia.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.