Copper oxide nanoparticles (CuONPs) are metallic multifunctional nanoparticles with good conductive, catalytic and antibacterial characteristics that have shown to cause reproductive dysfunction. However, the toxic effect and potential mechanisms of prepubertal exposure to CuONPs on male testicular development have not been clarified. In this study, healthy male C57BL/6 mice received 0, 10, and 25 mg/kg/d CuONPs by oral gavage for 2 weeks (postnatal day 22-35). The testicular weight was decreased, testicular histology was disturbed and the number of Leydig cells was reduced in all CuONPs-exposure groups. Transcriptome profiling suggested steroidogenesis was impaired after exposure to CuONPs. The steroidogenesis-related genes mRNA expression level, concentration of serum steroids hormones and the HSD17B3-, STAR- and CYP11A1-positive Leydig cell numbers were dramatically reduced. In vitro, we exposed TM3 Leydig cells to CuONPs. Bioinformatic analysis, flow cytometry analysis and western blotting analysis confirmed that CuONPs can dramatically reduce Leydig cells viability, enhance apoptosis, trigger cell cycle arrest and reduce cell testosterone levels. U0126 (ERK1/2 inhibitor) significantly reversed TM3 Leydig cells injury and testosterone level decrease induced by CuONPs. These outcomes indicate that CuONPs exposure activates the ERK1/2 signaling pathway, which further promotes apoptosis and cell cycle arrest in TM3 Leydig cells, and ultimately leads to Leydig cells injury and steroidogenesis disorders.
Keywords: Copper oxide nanoparticles; ERK1/2 pathway; Leydig cells; Prepubertal testis; Reproductive toxicity; Steroidogenesis.
Copyright © 2023 Elsevier Inc. All rights reserved.