Photon-Counting Computed Tomography (PC-CT) of the spine: impact on diagnostic confidence and radiation dose

Eur Radiol. 2023 Aug;33(8):5578-5586. doi: 10.1007/s00330-023-09511-5. Epub 2023 Mar 9.

Abstract

Objectives: Computed tomography (CT) is employed to evaluate surgical outcome after spinal interventions. Here, we investigate the potential of multispectral photon-counting computed tomography (PC-CT) on image quality, diagnostic confidence, and radiation dose compared to an energy-integrating CT (EID-CT).

Methods: In this prospective study, 32 patients underwent PC-CT of the spine. Data was reconstructed in two ways: (1) standard bone kernel with 65-keV (PC-CTstd) and (2) 130-keV monoenergetic images (PC-CT130 keV). Prior EID-CT was available for 17 patients; for the remaining 15, an age-, sex-, and body mass index-matched EID-CT cohort was identified. Image quality (5-point Likert scales on overall, sharpness, artifacts, noise, diagnostic confidence) of PC-CTstd and EID-CT was assessed by four radiologists independently. If metallic implants were present (n = 10), PC-CTstd and PC-CT130 keV images were again assessed by 5-point Likert scales by the same radiologists. Hounsfield units (HU) were measured within metallic artifact and compared between PC-CTstd and PC-CT130 keV. Finally, the radiation dose (CTDIvol) was evaluated.

Results: Sharpness was rated significantly higher (p = 0.009) and noise significantly lower (p < 0.001) in PC-CTstd vs. EID-CT. In the subset of patients with metallic implants, reading scores for PC-CT130 keV revealed superior ratings vs. PC-CTstd for image quality, artifacts, noise, and diagnostic confidence (all p < 0.001) accompanied by a significant increase of HU values within the artifact (p < 0.001). Radiation dose was significantly lower for PC-CT vs. EID-CT (mean CTDIvol: 8.83 vs. 15.7 mGy; p < 0.001).

Conclusions: PC-CT of the spine with high-kiloelectronvolt reconstructions provides sharper images, higher diagnostic confidence, and lower radiation dose in patients with metallic implants.

Key points: • Compared to energy-integrating CT, photon-counting CT of the spine had significantly higher sharpness and lower image noise while radiation dose was reduced by 45%. • In patients with metallic implants, virtual monochromatic photon-counting images at 130 keV were superior to standard reconstruction at 65 keV in terms of image quality, artifacts, noise, and diagnostic confidence.

Keywords: Artifacts; Bone screws; Radiation dosage; Radiology; Tomography, X-ray computed.

MeSH terms

  • Humans
  • Phantoms, Imaging
  • Photons
  • Prospective Studies
  • Radiation Dosage
  • Spinal Diseases* / diagnostic imaging
  • Spine / diagnostic imaging
  • Tomography, X-Ray Computed* / methods