Behavior of Per- and polyfluoroalkyl substances (PFAS) in Pilot-Scale vertical flow constructed wetlands treating landfill leachate

Waste Manag. 2023 Apr 15:161:187-192. doi: 10.1016/j.wasman.2023.03.001. Epub 2023 Mar 7.

Abstract

This study investigated the behavior of per- and polyfluoroalkyl substances (PFAS) in multiple pilot-scale vertical flow constructed wetlands (VFCW) treating landfill leachate. Eight pilot-scale VFCW columns planted with Typha latifolia or Scirpus Californicus were fed untreated municipal solid waste (MSW) landfill leachate that was diluted with potable water at a 1:10 ratio (1 part leachate to 10 parts total) at a fixed daily hydraulic loading rate of 0.525 m d-1. Ninety-two PFAS were examined and 18 PFAS were detected at quantifiable concentrations (7 precursor species and 11 terminal species). The average concentration of Σ92 PFAS in the influent was 3,100 ng L-1, which corresponded with minimal reduction in the effluents from the four VFCW (decreases ranged from 1% to 12% on average for Σ18 PFAS); however, precursors 6:3 FTCA, 7:3 FTCA, N-MeFOSAA, and N-EtFOSAA concentrations decreased significantly in the VFCW effluents, and significant decreases in the concentrations of these PFAA-precursors were concurrent with a significant increase in concentrations of five PFAAs (PFBA, PFNA, PFBS, PFOS, and PFOSI). This trend indicates that from a regulatory perspective, standalone VFCWs are likely to produce an apparent PFAS increase, which may also be true for many other leachate treatment processes incorporating aerobic biological treatment. Additional treatment to address PFAS should be integrated prior to the use of any system, including VFCWs, for the treatment of constituents of concern in MSW landfill leachate.

Keywords: Biodegradation; Wastewater treatment; precursor PFAS; terminal PFAS.

MeSH terms

  • Fluorocarbons* / analysis
  • Solid Waste
  • Water Pollutants, Chemical* / analysis
  • Wetlands

Substances

  • Water Pollutants, Chemical
  • Solid Waste
  • Fluorocarbons