Colorectal cancer is a very heterogeneous disease caused by the interaction of genetic and environmental factors. P53, as a frequent mutation gene, plays a critical role in the adenoma-carcinoma transition during the tumorous pathological process. Our team discovered TRIM3 as a tumor-associated gene in CRC by high-content screening techniques. TRIM3 demonstrated both tumor-suppressive and tumorigenic features in cell experiments dependent on the cell status of wild or mutant p53. TRIM3 could directly interact with the C terminus of p53 (residues 320 to 393), a common segment of wtp53 and mutp53. Moreover, TRIM3 could exert different neoplastic features by retaining p53 in the cytoplasm to decrease its nuclear expression in a wtp53 or mutp53-dependent pathway. Chemotherapy resistance develops in nearly all patients with advanced CRC and seriously limits the therapeutic efficacies of anticancer drugs. TRIM3 could reverse the chemotherapy resistance of oxaliplatin in mutp53 CRC cells by degradation of mutp53 in the nuclei to downregulate the multidrug resistance gene. Therefore, TRIM3 could be a potential therapeutic strategy to improve the survival of CRC patients with mutp53.
© 2023. The Author(s).