Importance: Adjusting quality measures used in pay-for-performance programs for social risk factors remains controversial.
Objective: To illustrate a structured, transparent approach to decision-making about adjustment for social risk factors for a measure of clinician quality that assesses acute admissions for patients with multiple chronic conditions (MCCs).
Design, setting, and participants: This retrospective cohort study used 2017 and 2018 Medicare administrative claims and enrollment data, 2013 to 2017 American Community Survey data, and 2018 and 2019 Area Health Resource Files. Patients were Medicare fee-for-service beneficiaries 65 years or older with at least 2 of 9 chronic conditions (acute myocardial infarction, Alzheimer disease/dementia, atrial fibrillation, chronic kidney disease, chronic obstructive pulmonary disease or asthma, depression, diabetes, heart failure, and stroke/transient ischemic attack). Patients were attributed to clinicians in the Merit-Based Incentive Payment System (MIPS; primary health care professionals or specialists) using a visit-based attribution algorithm. Analyses were conducted between September 30, 2017, and August 30, 2020.
Exposures: Social risk factors included low Agency for Healthcare Research and Quality Socioeconomic Status Index, low physician-specialist density, and Medicare-Medicaid dual eligibility.
Main outcomes and measures: Number of acute unplanned hospital admissions per 100 person-years at risk for admission. Measure scores were calculated for MIPS clinicians with at least 18 patients with MCCs assigned to them.
Results: There were 4 659 922 patients with MCCs (mean [SD] age, 79.0 [8.0] years; 42.5% male) assigned to 58 435 MIPS clinicians. The median (IQR) risk-standardized measure score was 38.9 (34.9-43.6) per 100 person-years. Social risk factors of low Agency for Healthcare Research and Quality Socioeconomic Status Index, low physician-specialist density, and Medicare-Medicaid dual eligibility were significantly associated with the risk of hospitalization in the univariate models (relative risk [RR], 1.14 [95% CI, 1.13-1.14], RR, 1.05 [95% CI, 1.04-1.06], and RR, 1.44 [95% CI, 1.43-1.45], respectively), but the association was attenuated in adjusted models (RR, 1.11 [95% CI 1.11-1.12] for dual eligibility). Across MIPS clinicians caring for variable proportions of dual-eligible patients with MCCs (quartile 1, 0%-3.1%; quartile 2, >3.1%-9.5%; quartile 3, >9.5%-24.5%, and quartile 4, >24.5%-100%), median measure scores per quartile were 37.4, 38.6, 40.0, and 39.8 per 100 person-years, respectively. Balancing conceptual considerations, empirical findings, programmatic structure, and stakeholder input, the Centers for Medicare & Medicaid Services decided to adjust the final model for the 2 area-level social risk factors but not dual Medicare-Medicaid eligibility.
Conclusions and relevance: This cohort study demonstrated that adjustment for social risk factors in outcome measures requires weighing high-stake, competing concerns. A structured approach that includes evaluation of conceptual and contextual factors, as well as empirical findings, with active engagement of stakeholders can be used to make decisions about social risk factor adjustment.