Cell context-dependent CFI-1/ARID3 functions control neuronal terminal differentiation

Cell Rep. 2023 Mar 28;42(3):112220. doi: 10.1016/j.celrep.2023.112220. Epub 2023 Mar 9.

Abstract

AT-rich interaction domain 3 (ARID3) transcription factors are expressed in the nervous system, but their mechanisms of action are largely unknown. Here, we provide, in vivo, a genome-wide binding map for CFI-1, the sole C. elegans ARID3 ortholog. We identify 6,396 protein-coding genes as putative direct targets of CFI-1, most of which encode neuronal terminal differentiation markers. In head sensory neurons, CFI-1 directly activates multiple terminal differentiation genes, thereby acting as a terminal selector. In motor neurons, however, CFI-1 acts as a direct repressor, continuously antagonizing three transcriptional activators. By focusing on the glr-4/GRIK4 glutamate receptor locus, we identify proximal CFI-1 binding sites and histone methyltransferase activity as necessary for glr-4 repression. Rescue assays reveal functional redundancy between core and extended DNA-binding ARID domains and a strict requirement for REKLES, the ARID3 oligomerization domain. Altogether, this study uncovers cell-context-dependent mechanisms through which a single ARID3 protein controls the terminal differentiation of distinct neuron types.

Keywords: ARID proteins; ARID3; C. elegans; CFI-1; CP: Neuroscience; CRISPR-Cas9 gene editing; ChIP-seq; neuronal differentiation; transcription factors.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Caenorhabditis elegans Proteins* / genetics
  • Caenorhabditis elegans Proteins* / metabolism
  • Caenorhabditis elegans* / genetics
  • Caenorhabditis elegans* / metabolism
  • Cell Differentiation / genetics
  • Motor Neurons / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Caenorhabditis elegans Proteins
  • Transcription Factors
  • CFI-1 protein, C elegans