Occurrence of trimethoprim (TMP), recalcitrant antibiotic, and its adverse effect on ecosystem have been reported in several countries. The study aims to remove the TMP and its phytotoxicity via a UV/chlorine process, compared with chlorination and UV irradiation alone. Various treatment conditions including chlorine doses, pHs, and TMP concentrations was conducted with synthetic waters and effluent waters. The UV/chlorine process exhibited a synergistic effect on the TMP removal, compared with chlorination and UV irradiation alone. The UV/chlorine process was the most effective in removing TMP, followed by chlorination. The UV irradiation slightly affected the TMP removal (less than 5%). The UV/chlorine process completely removed TMP by 15 min contact time, while chlorination for 60 min could achieve 71% of TMP removal. The TMP removal fitted well with the pseudo first-order kinetics, and the rate constant (k') increased with higher chlorine doses, lower TMP concentrations and low pH. HO• was the major oxidant affecting the TMP removal and its degradation rate, compared with other reactive chlorine species (e.g., Cl•, OCl•). The TMP exposure increased the phytotoxicity by decreasing a germination rate of Lactuca sativa and Vigna radiata seeds. The use of UV/chlorine process could effectively detoxify the TMP, resulting in the phytotoxicity level of treated waters equivalent or lower than those of TMP-free effluent water. The detoxification level depended on the TMP removal, and it was about 0.43-0.56 times of TMP removal. The findings indicated the potential use of UV/chlorine process in removing TMP residual and its phytotoxicity.
Keywords: Advanced oxidation process; UV/chlorine; antibiotics; hydroxyl radical; phytotoxicity.