Dry-processed rubberized asphalt mixture has recently attracted a lot of attention as an alternative to conventional asphalt mixtures. Dry-processed rubberized asphalt pavement has improved the overall performance characteristics compared to the conventional asphalt road. The objective of this research is to demonstrate the reconstruction of rubberized asphalt pavement and evaluate the pavement performance of dry-processed rubberized asphalt mixture based on laboratory and field tests. The noise mitigation effect of dry-processed rubberized asphalt pavement was evaluated at the field construction sites. A prediction of pavement distresses and long-term performance was also conducted using mechanistic-empirical pavement design. In terms of experimental evaluation, the dynamic modulus was estimated using materials test system (MTS) equipment, the low-temperature crack resistance was characterized by the fracture energy from the indirect tensile strength test (IDT), and the asphalt aging was assessed with the rolling thin-film oven (RTFO) test and the pressure aging vessel (PAV) test. The rheology properties of asphalt were estimated by a dynamic shear rheometer (DSR). Based on the test results: (1) The dry-processed rubberized asphalt mixture presented better resistance to cracking, as the fracture energy was enhanced by 29-50% compared to that of conventional hot mix asphalt (HMA); and (2) the high-temperature anti-rutting performance of the rubberized pavement increased. The dynamic modulus increased up to 19%. The findings of the noise test showed that at different vehicle speeds, the rubberized asphalt pavement greatly reduced the noise level by 2-3 dB. The pavement M-E (mechanistic-empirical) design-predicted distress illustrated that the rubberized asphalt pavement could reduce the IRI, rutting, and bottom-up fatigue-cracking distress based on a comparison of prediction results. To sum up, the dry-processed rubber-modified asphalt pavement has better pavement performance compared to the conventional asphalt pavement.
Keywords: dry process rubberized asphalt mixture; dynamic modulus; dynamic shear rheometer; noise test; pavement M-E design.