Gamma-Muricholic Acid Inhibits Nonalcoholic Steatohepatitis: Abolishment of Steatosis-Dependent Peroxidative Impairment by FXR/SHP/LXRα/FASN Signaling

Nutrients. 2023 Mar 2;15(5):1255. doi: 10.3390/nu15051255.

Abstract

Nonalcoholic steatohepatitis (NASH) reflects the outcome of steatosis-based peroxidative impairment. Here, the effect and mechanism of γ-muricholic acid (γ-MCA) on NASH were investigated on the basis of its actions in hepatic steatosis, lipid peroxidation, peroxidative injury, hepatocyte apoptosis, and its NAFLD activity score (NAS). The agonist action of γ-MCA on farnesoid X receptor (FXR) upregulated the small heterodimer partner (SHP) expression of hepatocytes. An increase in SHP attenuated the triglyceride-dominated hepatic steatosis which was induced in vivo by a high-fat high-cholesterol (HFHC) diet and in vitro by free fatty acids depending on the inhibition of liver X receptor α (LXRα) and fatty acid synthase (FASN). In contrast, FXR knockdown abrogated the γ-MCA-dependent lipogenic inactivation. When compared to their excessive production in HFHC diet-induced rodent NASH, products of lipid peroxidation (MDA and 4-HNE) exhibited significant reductions upon γ-MCA treatment. Moreover, the decreased levels of serum alanine aminotransferases and aspartate aminotransferases demonstrated an improvement in the peroxidative injury of hepatocytes. By TUNEL assay, injurious amelioration protected the γ-MCA-treated mice against hepatic apoptosis. The abolishment of apoptosis prevented lobular inflammation, which downregulated the incidence of NASH by lowering NAS. Collectively, γ-MCA inhibits steatosis-induced peroxidative injury to ameliorate NASH by targeting FXR/SHP/LXRα/FASN signaling.

Keywords: apoptosis; farnesoid X receptor; lipid peroxidation; muricholic acid; nonalcoholic steatohepatitis; steatosis.

MeSH terms

  • Animals
  • Cholic Acids / metabolism
  • Fatty Acid Synthases / metabolism
  • Liver / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / metabolism

Substances

  • muricholic acid
  • Cholic Acids
  • Fatty Acid Synthases