FOXP3+ regulatory T cells (Treg) depend on exogenous IL-2 for their survival and function, but circulating levels of IL-2 are low, making it unclear how Treg access this critical resource in vivo. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their tolerogenic function in vivo. Together, these data identify novel roles for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.