Sleep supports memory consolidation. However, it is not completely clear how different sleep stages contribute to this process. While rapid eye movement sleep (REM) has traditionally been implicated in the processing of emotionally charged material, recent studies indicate a role for slow wave sleep (SWS) in strengthening emotional memories. Here, to directly examine which sleep stage is primarily involved in emotional memory consolidation, we used targeted memory reactivation (TMR) in REM and SWS during a daytime nap. Contrary to our hypothesis, reactivation of emotional stimuli during REM led to impaired memory. Consistent with this, REM% was correlated with worse recall in the group that took a nap without TMR. Meanwhile, cueing benefit in SWS was strongly correlated with the product of times spent in REM and SWS (SWS-REM product), and reactivation significantly enhanced memory in those with high SWS-REM product. Surprisingly, SWS-REM product was associated with better memory for reactivated items and poorer memory for non-reactivated items, suggesting that sleep both preserved and eliminated emotional memories, depending on whether they were reactivated. Notably, the emotional valence of cued items modulated both sleep spindles and delta/theta power. Finally, we found that emotional memories benefited from TMR more than did neutral ones. Our results suggest that emotional memories decay during REM, unless they are reactivated during prior SWS. Furthermore, we show that active forgetting complements memory consolidation, and both take place across SWS and REM. In addition, our findings expand upon recent evidence indicating a link between sleep spindles and emotional processing.