Introduction: Chronic pain and sleep disturbance are bi-directionally related. Cortical electrical activity in the alpha frequency band can be enhanced with sensory stimulation via the phenomenon of entrainment, and may reduce pain perception. A smartphone based programme which delivers 10 Hz stimulation through flickering light or binaural beats was developed for use at night, pre-sleep, with the aim of improving night time pain and sleep and thereby subsequent pain and related daytime symptoms. The aim of this study was to assess the feasibility and give an indication of effect of this programme for individuals with chronic pain and sleep disturbance.
Materials and methods: In a non-controlled feasibility study participants used audio or visual alpha entrainment for 30 min pre-sleep each night for 4 weeks, following a 1 week baseline period. The study was pre-registered at ClinicalTrials.gov with the ID NCT04176861.
Results: 28 participants (79% female, mean age 45 years) completed the study with high levels of data completeness (86%) and intervention adherence (92%). Daily sleep diaries showed an increase compared to baseline in total sleep time of 29 min (p = 0.0033), reduction in sleep onset latency of 13 min (p = 0.0043), and increase in sleep efficiency of 4.7% (p = 0.0009). Daily 0-10 numerical rating scale of average pain at night improved by 0.5 points compared to baseline (p = 0.027). Standardised questionnaires showed significant within-participant improvements in sleep quality (change in median Global PSQI from 16 to 12.5), pain interference (change in median BPI Pain Interference from 7.5 to 6.8), fatigue (change in median MFI total score from 82.5 to 77), and depression and anxiety (change in median HADS depression score from 12 to 10.5 and anxiety from 13.5 to 11).
Discussion: Pre-sleep use of a smartphone programme for alpha entrainment by audio or visual stimulation was feasible for individuals with chronic pain and sleep disturbance. The effect on symptoms requires further exploration in controlled studies.
Keywords: binaural beats; brain stimulation; fatigue; mood; neuromodulation; smartphone; visual.
© 2023 Halpin, Casson, Tang, Jones, O'Connor and Sivan.