Carboxymethyl cellulose (CMC) is a hydrophilic derivative of cellulose whose large volumes have been used in textile processing, protective coatings, detergents, papers, and drilling fluids, while cellulose gum, which is the purified form of CMC, has extensive applications in food, cosmetic, and pharmaceutical industries. Therefore, this work reflects the production of CMC by extracting cellulose with traditional and ionosolv methods from domestic matchstick waste, providing an in-depth view of the overall process where two different kinds of cellulose were obtained from two different pretreatments, and the influence of cellulose on the profile of CMC was checked. All of the procedures have been performed under optimized conditions to reduce the cost and maximize the productiveness. The results depict that cellulose extracted by the ionosolv method using a protic ionic liquid, tetramethylguanidinium hydrogen sulfate (TMG-HSO4), is more degraded than that extracted by the traditional sulfide method using sodium sulfide (Na2S) and sodium hydroxide (NaOH). Thus, the produced CMC-2 via ionic liquid-extracted cellulose has more yield, DS (2.3), purity (98.5%), and solubility with less salt and moisture contents than CMC-1 produced by the conventional method due to an effective substitution of the hydroxyl group by the carboxymethyl group. Further, instrumental analyses like FTIR, XRD, 1H NMR, 13C NMR, and SEM emphasize the results that CMC-2 has more reduction of the hydroxyl peak in FTIR, a more amorphous structure in XRD, intense peaks in NMR, and the roughness of the surface in SEM.
© 2023 The Authors. Published by American Chemical Society.