Protective headgear effects measured in the laboratory may not always translate to the field. In this study, we evaluated the impact attenuation capabilities of a commercially available padded helmet shell cover in the laboratory and on the field. In the laboratory, we evaluated the padded helmet shell cover's efficacy in attenuating impact magnitude across six impact locations and three impact velocities when equipped to three different helmet models. In a preliminary on-field investigation, we used instrumented mouthguards to monitor head impact magnitude in collegiate linebackers during practice sessions while not wearing the padded helmet shell covers (i.e., bare helmets) for one season and whilst wearing the padded helmet shell covers for another season. The addition of the padded helmet shell cover was effective in attenuating the magnitude of angular head accelerations and two brain injury risk metrics (DAMAGE, HARM) across most laboratory impact conditions, but did not significantly attenuate linear head accelerations for all helmets. Overall, HARM values were reduced in laboratory impact tests by an average of 25% at 3.5 m/s (range: 9.7 to 39.6%), 18% at 5.5 m/s (range: - 5.5 to 40.5%), and 10% at 7.4 m/s (range: - 6.0 to 31.0%). However, on the field, no significant differences in any measure of head impact magnitude were observed between the bare helmet impacts and padded helmet impacts. Further laboratory tests were conducted to evaluate the ability of the padded helmet shell cover to maintain its performance after exposure to repeated, successive impacts and across a range of temperatures. This research provides a detailed assessment of padded helmet shell covers and supports the continuation of in vivo helmet research to validate laboratory testing results.
Keywords: Brain injury; Concussion; Head kinematics; Headgear; Instrumented mouthguard.
© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.