Structure of swollen hollow polyelectrolyte nanogels with inhomogeneous cross-link distribution

J Colloid Interface Sci. 2023 Jun 15:640:1015-1028. doi: 10.1016/j.jcis.2023.02.090. Epub 2023 Feb 21.

Abstract

Hypothesis: Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli. To bridge these gaps, molecular dynamics (MD) of computer simulations are used.

Experiments: Here, we propose a fresh methodology to create realistic hollow microgel particles in silico. The technique involves a gradual change in the average local length of subchains depending on the distance to the center of mass of the microgel particles resulting in the microgels with a non-uniform distribution of cross-linking species. In particular, a series of microgels with (i) a highly cross-linked inner part of the shell and gradually decreased cross-linker concentration towards the periphery, (ii) microgels with loosely cross-linked inner and outer parts, as well as (iii) microgels with a more-or-less homogeneous structure, have been created and validated. Counterions and salt ions are taken into account explicitly, and electrostatic interactions are described by the Coulomb potential.

Findings: Our studies reveal a strong dependence of the microgel swelling response on the network topology. Simple redistribution of cross-links plays a significant role in the structure of the microgels, including cavity size, microgel size, fuzziness, and extension of the inner and outer parts of the microgels. Our results indicate the possibilities of qualitative justification of the structure of the hollow microgels in the experiments by measuring the relative change in the size of the sacrificial core to the size of the cavity and by estimation of a power law function, [Formula: see text] , of the hydrodynamic radius of the hollow microgels as a function of added salt concentration.

Keywords: Hollow colloidal particles; Microgels; Polyelectrolytes; Polymer networks; pH-sensitive polymer gels.