Transdermal Delivery of Insulin Using Combination of Iontophoresis and Deep Eutectic Solvents as Chemical Penetration Enhancers: In Vitro and in Vivo Evaluations

J Pharm Sci. 2023 Aug;112(8):2249-2259. doi: 10.1016/j.xphs.2023.03.005. Epub 2023 Mar 14.

Abstract

A serious challenge in transdermal iontophoresis (IP) delivery of insulin (INS) is the low permeability of the drug across the skin. In this paper, we introduced deep eutectic solvent (DESs) as novel chemical penetration enhancers (CPEs) for transdermal IP of INS across rat skin, both in vitro and in vivo. Three different DESs based on choline chloride (ChCl), namely, ChCl/UR (ChCl and urea), ChCl/GLY (ChCl and glycerol), and ChCl/EG (ChCl and ethylene glycol) in the 1:2 molar ratios have been prepared. To evaluate the capability of studied DESs as CPEs for IP delivery of INS, the rat skin sample was treated with each DES. The effects of different experimental parameters (current density, formulation pH, INS concentration, NaCl concentration, and treatment time) on the in vitro transdermal iontophoretic delivery of INS were investigated. The in vitro permeation studies exhibited that INS was easily delivered employing ChCl/EG, and ChCl/GLY treatments, compared with ChCl/UR: the cumulative amount of permeated INS at the end of the experiment (Q24h) was found to be 131.0, 89.4, and 29.6 µg cm-2 in the presence of ChCl/EG, ChCl/GLY, and ChCl/UR, respectively. The differences in Q24h values of INS are due to the different capabilities of the studied DESs to treat the epidermis layer of skin. In vivo experiments revealed that the blood glucose level in diabetic rats could be decreased using ChCl/EG, and ChCl/GLY as novel CPEs in the IP delivery of INS. The presented work will open new doors towards searching for novel CPEs in the development of transdermal IP of INS.

Keywords: Chemical penetration enhancers; Deep eutectic solvents; Insulin; Transdermal iontophoresis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Cutaneous
  • Animals
  • Deep Eutectic Solvents
  • Diabetes Mellitus, Experimental* / drug therapy
  • Insulin*
  • Iontophoresis
  • Rats
  • Solvents

Substances

  • Insulin
  • Deep Eutectic Solvents
  • Solvents