The effect of salt concentration (3%, 6%, and 9%) on the mass transfer kinetics of Kimchi cabbage during osmotic dehydration was investigated, including its influence on textural and microstructural properties and salt distribution. First, kinetics was analyzed using diffusion theory to determine the impact of the factors on moisture and salt transfer. Subsequently, using the Peleg, Azuara, Henderson-Pabis, and Page models, mathematical modeling of mass transfer (water loss and salt gain) was investigated. According to the statistical analysis, the Peleg model provided the best fit for the experimental results under the operating conditions. In addition, a novel viewpoint was proposed in which the salt content of Kimchi cabbage may be indirectly forecasted by monitoring solution salinity during osmotic dehydration. Higher salt concentration resulted in decreased hardness, gumminess, and chewiness in Kimchi cabbage. Scanning electron microscopy and energy-dispersive X-ray mapping images showed an intensification of moisture and salt transport with increasing salt content, which were confirmed using modeling studies. The results could be applied in the prediction of the target salinity of Kimchi cabbage during the salting process and could facilitate the improvement of final Kimchi product quality by producing salted Kimchi cabbage with uniform salinity.
Keywords: Kimchi cabbage; brine salting; mass transfer kinetics; osmotic dehydration; prediction model; salted Kimchi cabbage.
© 2023 The Authors. Journal of Food Science published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.