A novel class of cyclometalated platinum(II) complexes-previously considered to be inaccessible-was synthesized by an improved synthetic route utilizing ligands predicted by density functional theory calculations. Based on a concise quantum chemical screening three model ligands with varying steric demand were chosen and a series of six photoluminescent C^C* cyclometalated platinum(II) formamidinate complexes was obtained. The least sterically demanding ligand led to a bimetallic complex in two isomeric forms, which could be separated and confirmed by the corresponding solid-state structures. Sterically more hindered amidinate ligands gave the monometallic complexes supporting the theoretical predictions. The monometallic complexes show a significant hypsochromic shift of the emission wavelength, explained by the loss of the metal-metal interactions. Depending on the cyclometalating ligand quantum yields up to 87 % with short decay times were found for this new class of phosphorescent green-blue to pure blue platinum(II) emitters.
Keywords: Amidinate; Cyclometalated Complexes; N-Heterocyclic Carbenes; OLED; Platinum.
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.