Terbium(III)-doped yttrium aluminate perovskite (YAP:xTb3+ ) (x = 0.01-0.08 mol) was synthesized using a simple gel-combustion method. Structural elucidations were performed using X-ray diffraction (XRD) and Rietveld analysis. Fourier-transform infrared spectral studies validated the efficient synthesis of designed doped samples. Transmission electron microscopic images showed the agglomerated irregular dimensions of the synthesized nanocrystalline materials. When excited at 251 nm, a strong emissive line attributed to 5 D4 → 7 F5 electronic transition was observed at 545 nm (green emission). The maximum luminescence was found at the optimized concentration (0.05 mol) of Tb3+ ions; this emission was quenched by dipolar-dipolar (d-d) interactions. Chromaticity (x and y) and correlated colour temperature parameters were obtained by analysing the emission profiles. Finally, the colour coordinates of nanophosphors were closer to the National Television Standards Committee green coordinates, which replicates their potency in the design and architecture of R-G-B-based white LEDs.
Keywords: Rietveld refinement; X-ray diffraction; chromaticity parameters; yttrium aluminate perovskite.
© 2023 John Wiley & Sons Ltd.