The determination of sudden cardiac death (SCD) is one of the difficult tasks in the forensic practice, especially in the absence of specific morphological changes in the autopsies and histological investigations. In this study, we combined the metabolic characteristics from corpse specimens of cardiac blood and cardiac muscle to predict SCD. Firstly, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS)-based untargeted metabolomics was applied to obtain the metabolomic profiles of the specimens, and 18 and 16 differential metabolites were identified in the cardiac blood and cardiac muscle from the corpses of those who died of SCD, respectively. Several possible metabolic pathways were proposed to explain these metabolic alterations, including the metabolism of energy, amino acids, and lipids. Then, we validated the capability of these combinations of differential metabolites to distinguish between SCD and non-SCD through multiple machine learning algorithms. The results showed that stacking model integrated differential metabolites featured from the specimens showed the best performance with 92.31% accuracy, 93.08% precision, 92.31% recall, 91.96% F1 score, and 0.92 AUC. Our results revealed that the SCD metabolic signature identified by metabolomics and ensemble learning in cardiac blood and cardiac muscle has potential in SCD post-mortem diagnosis and metabolic mechanism investigations.
Keywords: Machine learning algorithm; Stacking learning; Sudden cardiac death; UPLC-HRMS; Untargeted metabolomics.
© 2023. Springer-Verlag GmbH Germany, part of Springer Nature.