Adaptive changes in crops contribute to the diversity of agronomic traits, which directly or indirectly affect yield. The change of pubescence form from appressed to erect is a notable feature during soybean domestication. However, the biological significance and regulatory mechanism underlying this transformation remain largely unknown. Here, we identified a major-effect locus, PUBESCENCE FORM 1 (PF1), the upstream region of Mao1, that regulates pubescence form in soybean. The insertion of a Ty3/Gypsy retrotransposon in PF1 can recruit the transcription factor GAGA-binding protein to a GA-rich region, which up-regulates Mao1 expression, underpinning soybean pubescence evolution. Interestingly, the proportion of improved cultivars with erect pubescence increases gradually with increasing latitude, and erect-pubescence cultivars have a higher yield possibly through a higher photosynthetic rate and photosynthetic stability. These findings open an avenue for molecular breeding through either natural introgression or genome editing toward yield improvement and productivity.
Keywords: photosynthesis; pubescence form; soybean; yield.