Global health services are disrupted by the COVID-19 pandemic. We evaluated extent and duration of impacts of the pandemic on health services utilization in different economically developed regions of mainland China. Based on monthly health services utilization data in China, we used Seasonal Autoregressive Integrated Moving Average (S-ARIMA) models to predict outpatient and emergency department visits to hospitals (OEH visits) per capita without pandemic. The impacts were evaluated by three dimensions:1) absolute instant impacts were evaluated by difference between predicted and actual OEH visits per capita in February 2020 and relative instant impacts were the ratio of absolute impacts to baseline OEH visits per capita; 2) absolute and relative accumulative impacts from February 2020 to March 2021; 3) duration of impacts was estimated by time that actual OEH visits per capita returned to its predicted value. From February 2020 to March 2021, the COVID-19 pandemic reduced OEH visits by 0.4676 per capita, equivalent to 659,453,647 visits, corresponding to a decrease of 15.52% relative to the pre-pandemic average annual level in mainland China. The instant impacts in central, northeast, east and west China were 0.1279, 0.1265, 0.1215, and 0.0986 visits per capita, respectively; and corresponding relative impacts were 77.63%, 66.16%, 44.39%, and 50.57%, respectively. The accumulative impacts in northeast, east, west and central China were up to 0.5898, 0.4459, 0.3523, and 0.3324 visits per capita, respectively; and corresponding relative impacts were 23.72%, 12.53%, 13.91%, and 16.48%, respectively. The OEH visits per capita has returned back to predicted values within the first 2, 6, 9, 9 months for east, central, west and northeast China, respectively. Less economically developed areas were affected for a longer time. Safe and equitable access to health services, needs paying great attention especially for undeveloped areas.
Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.