Background: 1,3-Propanediol (1,3-PDO) is a platform compound, which has been widely used in food, pharmaceutical and cosmetic industries. Compared with chemical methods, the biological synthesis of 1,3-PDO has shown promising applications owing to its mild conditions and environmental friendliness. However, the biological synthesis of 1,3-PDO still has the problem of low titer and yield due to the shortage of reducing powers.
Results: In this study, Klebsiella sp. strain YT7 was successfully isolated, which can synthesize 11.30 g/L of 1,3-PDO from glycerol in flasks. The intracellular redox regulation strategy based on the addition of electron mediators can increase the 1,3-PDO titer to 28.01 g/L. Furthermore, a co-culturing system consisting of strain YT7 and Shewanella oneidensis MR-1 was established, which can eliminate the supplementation of exogenous electron mediators and reduce the by-products accumulation. The 1,3-PDO yield reached 0.44 g/g and the final titer reached 62.90 g/L. The increased titer and yield were attributed to the increased redox levels and the consumption of by-products.
Conclusions: A two-bacterium co-culture system with Klebsiella sp. strain YT7 and S. oneidensis strain MR-1 was established, which realized the substitution of exogenous electron mediators and the reduction of by-product accumulation. Results provided theoretical basis for the high titer of 1,3-PDO production with low by-product concentration.
Keywords: 1,3-Propanediol; Cofactor regulation; Glycerol; Klebsiella; Microbial co-cultivation system.
© 2023. The Author(s).