Reductions in regional theta power and fronto-parietal theta-gamma phase-amplitude coupling during gaze processing in bipolar disorder

Psychiatry Res Neuroimaging. 2023 Jun:331:111629. doi: 10.1016/j.pscychresns.2023.111629. Epub 2023 Mar 18.

Abstract

Impaired social cognition is common in bipolar disorder (BD) and predicts poor functional outcomes. A critical determinant of social cognition is the ability to discriminate others' gaze direction, and its alteration may contribute to functional impairment in BD. However, the neural mechanisms underlying gaze processing in BD are unclear. Because neural oscillations are crucial neurobiological mechanisms supporting cognition, we aimed to understand their role in gaze processing in BD. Using electroencephalography (EEG) data recorded during a gaze discrimination task for 38 BD and 34 controls (HC), we examined: theta and gamma power over bilateral posterior and midline anterior locations associated with early face processing and higher-level cognitive processing, and theta-gamma phase-amplitude coupling (PAC) between locations. Compared to HC, BD showed reduced midline-anterior and left-posterior theta power, and diminished bottom-up/top-down theta-gamma PAC between anterior/posterior sites. Reduced theta power and theta-gamma PAC related to slower response times. These findings suggest that altered theta oscillations and anterior-posterior cross-frequency coupling between areas associated with higher-level cognition and early face processing may underlie impaired gaze processing in BD. This is a crucial step towards translational research that may inform novel social cognitive interventions (e.g., neuromodulation to target specific oscillatory dynamics) to improve functioning in BD.

Keywords: Bipolar disorder; EEG; Gaze processing; Neural oscillations; Social cognition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bipolar Disorder*
  • Cognition / physiology
  • Cognitive Dysfunction*
  • Electroencephalography
  • Humans
  • Reaction Time