Development and validation of an intuitive biomechanics-based method for intraocular pressure measurement: a modal analysis approach

BMC Ophthalmol. 2023 Mar 27;23(1):124. doi: 10.1186/s12886-023-02867-8.

Abstract

Background: Current intraocular pressure (IOP) measurements based on non-contact tonometry are derived from statistics-driven equations and lack biomechanical significance, which often leads to under-estimation in post-refractive surgery cornea. This study aims to introduce and validate modal analysis-derived intraocular pressure (mIOP) as a novel method generated through Legendre-based modal decomposition of the anterior corneal contour; it provides an accurate and intuitive IOP measurement from an energy-based perspective.

Methods: This retrospective study included 680 patients. Healthy participants were divided into reference (n = 385) and validation (n = 142) datasets, and the others underwent either femtosecond-assisted laser in situ keratomileusis (FS-LASIK, n = 58) or transepithelial photorefractive keratectomy (TPRK, n = 55). Corneal curvature of the right eyes was extracted from raw serial cross-sectional images of the cornea generated by Corvis ST, a noncontact tonometer with a high-speed Scheimpflug-camera. Legendre expansion was then applied to the corneal curvature to obtain the modal profiles (i.e., temporal changes of the coefficient for each basis polynomial [modes]). Using the reference dataset, feature selection on the modal profiles generated a final mIOP model consisting of a single parameter: total area under curve (frames 1-140) divided by the area under curve of the rising phase (frames 24-40) in the fourth mode, i.e. the M4 ratio. Validation was performed in both the healthy validation and postoperative datasets. IOP-Corvis, pachymetry-corrected IOP, biomechanically corrected IOP, and mIOP values were compared. For the FS-LASIK and TPRK groups, pairwise postoperative IOP changes were analyzed through repeated measures analysis of variance, and agreement was examined through Bland-Altman analysis. Using a finite element analysis based three-dimensional model of the human cornea, we further compared the M4 ratio with the true intraocular pressure within the physiological range.

Results: The M4 ratio-based mIOP demonstrated weak to negligible association with age, radius of corneal curvature, and central corneal thickness (CCT) in all validation analyses, and performed comparably with biomechanically corrected IOP (bIOP) in the refractive surgery groups. Both remained nearly constant postoperatively and were not influenced by CCT changes. Additionally, M4 ratio accurately represented true intraocular pressure in the in silico model.

Conclusions: mIOP is a reliable IOP measurement in healthy and postrefractive surgery populations. This energy-based, ratio-derived approach effectively filters out pathological, rotational, misaligned movements and serves as an interpatient self-calibration index. Modal analysis of corneal deformation dynamics provides novel insights into regional corneal responses against pressure loading.

Keywords: Biomechanics; Cornea vibration; Modal analysis.

MeSH terms

  • Biomechanical Phenomena
  • Cornea / pathology
  • Humans
  • Intraocular Pressure*
  • Myopia* / diagnosis
  • Myopia* / pathology
  • Myopia* / surgery
  • Retrospective Studies
  • Tonometry, Ocular / methods