The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but also on the biocidal properties of the carriers. In order to fully examine the halloysite in terms of the possibility of gentamicin incorporating, a number of modifications of the native halloysite were carried out prior to gentamicin intercalation with the use of sodium alkali, sulfuric and phosphoric acids, curcumin and the process of delamination of nanotubes (expanded halloysite) with ammonium persulfate in sulfuric acid. Gentamicin was added to unmodified and modified halloysite in an amount corresponding to the cation exchange capacity of pure halloysite from the Polish Dunino deposit, which was the reference sample for all modified carriers. The obtained materials were tested to determine the effect of surface modification and their interaction with the introduced antibiotic on the biological activity of the carrier, kinetics of drug release, as well as on the antibacterial activity against Escherichia coli Gram-negative bacteria (reference strain). For all materials, structural changes were examined using infrared spectroscopy (FTIR) and X-ray diffraction (XRD); thermal differential scanning calorimetry with thermogravimetric analysis (DSC/TG) was performed as well. The samples were also observed for morphological changes after modification and drug activation by transmission electron microscopy (TEM). The conducted tests clearly show that all samples of halloysite intercalated with gentamicin showed high antibacterial activity, with the highest antibacterial activity for the sample modified with sodium hydroxide and intercalated with the drug. It was found that the type of halloysite surface modification has a significant effect on the amount of gentamicin intercalated and then released into the surrounding environment but does not significantly affect its ability to further influence drug release over time. The highest amount of drug released among all intercalated samples was recorded for halloysite modified with ammonium persulfate (real loading efficiency above 11%), for which high antibacterial activity was found after surface modification, before drug intercalation. It is also worth noting that intrinsic antibacterial activity was found for non-drug-intercalated materials after surface functionalization with phosphoric acid (V) and ammonium persulfate in the presence of sulfuric acid (V).
Keywords: antibacterial activity; drug carrier; functionalization; gentamicin; halloysite nanotubes.