The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO

Nat Commun. 2023 Mar 28;14(1):1724. doi: 10.1038/s41467-023-37360-9.

Abstract

Nanostructured metal-nitrides have attracted tremendous interest as a new generation of catalysts for electroreduction of CO2, but these structures have limited activity and stability in the reduction condition. Herein, we report a method of fabricating FeN/Fe3N nanoparticles with FeN/Fe3N interface exposed on the NP surface for efficient electrochemical CO2 reduction reaction (CO2RR). The FeN/Fe3N interface is populated with Fe-N4 and Fe-N2 coordination sites respectively that show the desired catalysis synergy to enhance the reduction of CO2 to CO. The CO Faraday efficiency reaches 98% at -0.4 V vs. reversible hydrogen electrode, and the FE stays stable from -0.4 to -0.9 V during the 100 h electrolysis time period. This FeN/Fe3N synergy arises from electron transfer from Fe3N to FeN and the preferred CO2 adsorption and reduction to *COOH on FeN. Our study demonstrates a reliable interface control strategy to improve catalytic efficiency of the Fe-N structure for CO2RR.