Polymers via high internal phase emulsion (polyHIPEs) were molecularly imprinted with Irbesartan, an antihypertensive drug belonging to the class of angiotensin II receptor antagonists (sartan drugs), chosen for the proof-of-concept extraction of hazardous emerging contaminants from water. Different analyte-functional monomer molar ratios (1:100, 1:30 and 1:15) were investigated, and the MIP polyHIPEs have been characterized, parallel to the not imprinted polymer (NIP), by batch sorption experiments. The material with the highest template-functional monomer ratio was the best for Irbesartan removal, showing a sorption capacity fivefold higher than the NIP. Regarding the adsorption kinetics, the analyte-sorbent equilibrium was reached after about 3 h, and the film diffusion model best fitted the kinetic profile. Selectivity was further demonstrated by testing Losartan, another sartan drug, observing a fourfold lower sorption capacity, but still higher than that of NIP. The polymers were also synthesized in cartridges for solid-phase extraction (SPE), which was helpful for evaluating the breakthrough curves and performing pre-concentrations. These have been done in tap and river water samples (100-250 mL, 15-500 µg L-1 Irbesartan), obtaining quantitative sorption/desorption on the MIP-polyHIPE (RSD < 14%, n = 3). The NIP provided a recovery of just around 30%, evidence of partial uptake of the target from water.
Keywords: environmental waters; molecularly imprinted polymers; pharmaceuticals; pollutants; polyHIPE; solid-phase extraction; water purification.