Vedolizumab is efficacious in the treatment of Crohn's disease (CD) and ulcerative colitis (UC). However, a significant proportion of patients present with a non-response. To investigate whether differences in the clinical response to vedolizumab is reflected in changes in gene expression levels in whole blood, samples were collected at baseline before treatment, and at follow-up after 10-12 weeks. Whole genome transcriptional profiles were established by RNA sequencing. Before treatment, no differentially expressed genes were noted between responders (n = 9, UC 4, CD 5) and non-responders (n = 11, UC 3, CD 8). At follow-up, compared with baseline, responders displayed 201 differentially expressed genes, and 51 upregulated (e.g., translation initiation, mitochondrial translation, and peroxisomal membrane protein import) and 221 downregulated (e.g., Toll-like receptor activating cascades, and phagocytosis related) pathways. Twenty-two of the upregulated pathways in responders were instead downregulated in non-responders. The results correspond with a dampening of inflammatory activity in responders. Although considered a gut-specific drug, our study shows a considerable gene regulation in the blood of patients responding to vedolizumab. It also suggests that whole blood is not optimal for identifying predictive pre-treatment biomarkers based on individual genes. However, treatment outcomes may depend on several interacting genes, and our results indicate a possible potential of pathway analysis in predicting response to treatment, which merits further investigation.
Keywords: RNA sequencing; RNA-seq; biomarker; differentially expressed genes; gene set enrichment analysis; transcriptome; vedolizumab.