The effective interfacial tensions between pure liquids and rough solids: a coarse-grained simulation study

Phys Chem Chem Phys. 2023 Apr 12;25(15):10325-10334. doi: 10.1039/d2cp04321a.

Abstract

The effective solid-liquid interfacial tension (SL-IFT) between pure liquids and rough solid surfaces is studied through coarse-grained simulations. Using the dissipative particle dynamics method, we design solid-liquid interfaces, confining a pure liquid between two explicit solid surfaces with different roughness degrees. The roughness of the solid phase is characterized by Wenzel's roughness factor and the effective SL-IFT is reported as a function of it also. Two solid-liquid systems, different from each other by their solid-liquid repulsion strength, are studied to measure the effects caused by the surface roughness on the calculation of . It is found that the roughness changes the structure of the liquid, which is observed in the first layer of liquid near the solid. These changes are responsible for the effective SL-IFT increase, as surface roughness increases. Although there is a predominance of surface roughness in the calculation of it is found that the effective SL-IFT is directly proportional to the magnitude of the solid-liquid repulsion strength. The insights provided by these simulations suggest that the increase of Wenzel's roughness factor increases the number of effective solid-liquid interactions between particles, yielding significant changes in the local values of the normal and tangential components of the pressure tensor.