The Lumbosacral Fractional Curve vs Maximum Coronal Cobb Angle in Adult Spinal Deformity Patients with Coronal Malalignment: Which Matters More?

Global Spine J. 2024 Sep;14(7):1968-1977. doi: 10.1177/21925682231161564. Epub 2023 Mar 29.

Abstract

Study design: Retrospective cohort study.

Objectives: In patients undergoing adult spinal deformity (ASD) surgery we sought to: 1) report preoperative and postoperative lumbosacral fractional (LSF) curve and maximum coronal Cobb angles and 2) determine their impact on radiographic, clinical, and patient-reported outcomes (PROs).

Methods: A single-institution cohort study was undertaken. The LSF curve was the cobb angle between the sacrum and most tilted lower lumbar vertebra. Coronal/sagittal vertical axis (CVA/SVA) were collected. Patients were compared between 4 groups: 1) Neutral Alignment (NA); 2) coronal malalignment only (CM); 3) Sagittal malalignment only (SM); and 4) Combined-Coronal-Sagittal-Malalignment (CCSM). Outcomes including postoperative CM, postoperative coronal vertical axis, complications, readmissions, reoperation, and PROs.

Results: A total of 243 patients underwent ASD surgery with mean total instrumented levels of 13.5. Mean LSF curve was 12.1±9.9°(0.2-62.3) and mean max Cobb angle was 43.0±26.5° (0.0-134.3). The largest mean LSF curves were seen in patients with CM (14.6°) and CCSM (13.1°) compared to NA (12.1°) and SM (9.5°) (p=0.100). A higher LSF curve was seen in patients with fusion to the sacrum and instrumentation to the pelvis (p=0.009), and a higher LSF curve was associated with more TLIFs (p=0.031). Postoperatively, more TLIFs were associated with greater amount of LSF curve correction (p<0.001). Comparing the LSF and the max Cob angle among Qiu types, the highest mean max Cobb angle was in Qiu Type B patients (p=0.025), whereas the highest mean LSF curve was in Qiu Type C patients (p=0.037). Moreover, 82.7% of patients had a LSF curve opposite the max Cobb angle. The LSF curve was larger than the max Cobb angle in 22/243 (9.1%) patients, and most of these 22 patients were Qiu Type A (59.1%). Regarding correction, the max Cobb angle achieved more correction than the LSF curve, judged by the percent improved from preop (54.5% Cobb vs. 46.5% LSF, p=0.025) in patients with max cobb>20° and LSF curve >5°. The LSF curve underwent greater correction in Qiu Type C patients (9.2°) compared to Type A (5.7°) and Type B (5.1°) (p=0.023); however, the max Cobb angle was similarly corrected among Qiu Types: Type A 21.8°, Type B 24.6°, and Type C 25.4° (p=0.602). Minimal differences were seen comparing the preop/postop/change in LSF curve and max Cobb angle regarding postop CM, postop CVA, complications, readmissions, reoperation, and PROs.

Conclusions: The LSF curve was highest in patients with CM, CCSM, and Qiu Type C curves. Most patients had a LSF curve opposite the max Cobb angle. The max Cobb angle was more often corrected than the LSF curve. The LSF curve underwent greater correction among Qiu Type C patients, whereas the max Cobb angle was similarly corrected among all Qiu Types. No clear trend was seen regarding postoperative complications and PROs between the LSF curve and max Cobb angle.

Keywords: adult spinal deformity; lumbosacral curve; max cobb angle; patient-reported outcome; vertical axis.