Polycyclic aromatic hydrocarbon (PAHs) are persistent organic pollutants and pose high risk in aquatic environment. The utilization of biochar is a strategy for PAHs-contaminated remediation but is challenging due to the adsorption saturation and reoccurrence of PAHs desorbed back into water. In this study, iron (Fe) and manganese (Mn) were provided as electron acceptors for biochar modification to enhance anaerobic biodegradation of phenanthrene (Phe). Results revealed that, the Mn(Ⅳ) and Fe(Ⅲ) modification improved the removal of Phe by 24.2% and 31.4% than that of biochar, respectively. Additionally, nitrate removal was improved by 19.5% with Fe(Ⅲ) amendment. The Mn-and Fe-biochar decreased Phe contents by 8.7% and 17.4% in sediment, 10.3% and 13.8% in biochar than that of biochar. Much higher DOC contents were observed with Mn- and Fe-biochar, which provided bioavailable carbon source for microbes and contributed to microbial degradation of Phe. The greater degree of humification, higher proportions of humic and fulvic acid like components in metallic biochar participated in electron transport and further enhancing the degradation of PAHs. Microbial analysis proved the high abundance of Phe-degrading bacteria (e.g. PAH-RHDα, Flavobacterium and Vibrio), nitrogen removal microbes (e.g. amoA, nxrA, and nir), Fe and Mn bioreduction or oxidation (e. g. Bacillus, Thermomonas, Deferribacter) with metallic biochar. Based on the results, the Fe and Mn modification, especially Fe-modified biochar provided well performance for PAHs removal in aquatic sediment.
Keywords: Biochar; Dissolved organic matter; Iron; Manganese; PAHs.
Copyright © 2023 Elsevier Ltd. All rights reserved.