Cellulase-producing microorganisms produce low titres of β-glucosidases with low tolerance to glucose. This study aimed to improve production, purify, and characterize a β-glucosidase from a newly isolated Neofusicoccum parvum strain F7. β-Glucosidase production was significantly enhanced by a sequential statistical modelling approach from 1.5-fold in Plackett-Burman design to 2.5 U/ml in the Box-Behnken design compared to the preliminary one variable at a time experiments (1.6 U/ml). The optimal conditions for enzyme production by BBD were 12 days of fermentation at 20 °C, 175 rpm, 0.5% glycerol and 1.5% casein in pH 6.0 buffer. Three β-glucosidase isoforms referred to as Bgl1, Bgl2, Bgl3 were purified and characterized from the optimized crude extract displaying IC50 values of 2.6, 22.6 and 319.5 mM for glucose, respectively. Bgl3 with a molecular mass of approximately 65 kDa demonstrated the highest tolerance to glucose among the isoforms. The optimum activity and stability for Bgl3 was observed at pH 4.0 in 50 mM sodium acetate buffer with 80% β-glucosidase residual activity retained for three hours. This isoform also retained 60% residual activity at 65 °C for one hour which was then reduced to 40% which remained stable for another 90 min. The β-glucosidase activity of Bgl3 was not enhanced after the addition of metal ions in assay buffers. The Km and vmax for 4-nitrophenyl-β-D-glucopyranoside were 1.18 mM and 28.08 µmol/min, respectively indicating high affinity for the substrate. The ability to withstand the presence of glucose in conjunction with its thermophilic nature indicates promise for this enzyme in industrial application.
© 2023. The Author(s).