Recycling of Bacterial RNA Polymerase by the Swi2/Snf2 ATPase RapA

bioRxiv [Preprint]. 2023 Mar 24:2023.03.22.533849. doi: 10.1101/2023.03.22.533849.

Abstract

Free-living bacteria have regulatory systems that can quickly reprogram gene transcription in response to changes in cellular environment. The RapA ATPase, a prokaryotic homolog of the eukaryote Swi2/Snf2 chromatin remodeling complex, may facilitate such reprogramming, but the mechanisms by which it does so is unclear. We used multi-wavelength single-molecule fluorescence microscopy in vitro to examine RapA function in the E. coli transcription cycle. In our experiments, RapA at < 5 nM concentration did not appear to alter transcription initiation, elongation, or intrinsic termination. Instead, we directly observed a single RapA molecule bind specifically to the kinetically stable post-termination complex (PTC) -- consisting of core RNA polymerase (RNAP) bound to dsDNA -- and efficiently remove RNAP from DNA within seconds in an ATP-hydrolysis-dependent reaction. Kinetic analysis elucidates the process through which RapA locates the PTC and the key mechanistic intermediates that bind and hydrolyze ATP. This study defines how RapA participates in the transcription cycle between termination and initiation and suggests that RapA helps set the balance between global RNAP recycling and local transcription re-initiation in proteobacterial genomes.

Significance: RNA synthesis is an essential conduit of genetic information in all organisms. After transcribing an RNA, the bacterial RNA polymerase (RNAP) must be reused to make subsequent RNAs, but the steps that enable RNAP reuse are unclear. We directly observed the dynamics of individual molecules of fluorescently labeled RNAP and the enzyme RapA as they colocalized with DNA during and after RNA synthesis. Our studies show that RapA uses ATP hydrolysis to remove RNAP from DNA after the RNA is released from RNAP and reveal essential features of the mechanism by which this removal occurs. These studies fill in key missing pieces in our current understanding of the events that occur after RNA is released and that enable RNAP reuse.

Publication types

  • Preprint