Multichannel Sensorimotor Integration with a Dexterous Artificial Hand

Res Sq [Preprint]. 2023 Mar 16:rs.3.rs-2684789. doi: 10.21203/rs.3.rs-2684789/v1.

Abstract

Background: People use their hands to perform sophisticated tasks like playing a musical instrument by integrating manifold and diverse sensations of touch with motor control strategies. In contrast, prosthetic hands lack the capacity for multichannel haptic feedback and multitasking functionality remains rudimentary. There is a dearth of research exploring the potential of upper limb absent (ULA) people to integrate multiple channels of haptic feedback into dexterous prosthetic hand control strategies.

Methods: In this paper, we designed a novel experimental paradigm for three ULA people and nine additional subjects to investigate their ability to integrate two simultaneously activated channels of context-specific haptic feedback into their dexterous artificial hand control strategies. Artificial neural networks (ANN) were designed for pattern recognition of the array of efferent electromyogram signals that controlled the dexterous artificial hand. ANNs were also used to classify the directions that objects were sliding across two tactile sensor arrays on the index (I) and little (L) fingertips of the robotic hand. The direction of sliding contact at each robotic fingertip was encoded by different stimulation frequencies of wearable vibrotactile actuators for haptic feedback. The subjects were tasked with implementing different control strategies with each finger simultaneously depending upon the perceived directions of sliding contact. This required the 12 subjects to concurrently control individual fingers of the artificial hand by successfully interpreting two channels of simultaneously activated context-specific haptic feedback.

Results: Subjects were able to accomplish this complex feat of multichannel sensorimotor integration with an overall accuracy of 95.53% ± 0.23%. While there was no statistically significant difference in the classification accuracy between ULA people and the other subjects, the ULA people required more time to correctly respond to the simultaneous haptic feedback slip signals, suggesting a higher cognitive load required by the ULA people.

Conclusion: ULA people can integrate multiple channels of simultaneously activated and nuanced haptic feedback with their control of individual fingers of an artificial hand. These findings provide a step toward empowering amputees to multitask with dexterous prosthetic hands, which remains an ongoing challenge.

Keywords: Amputee; Artificial Intelligence; Haptic Feedback; Neural Network; Prosthetic Hand; Sensorimotor Integration; Slip prevention.

Publication types

  • Preprint