Purpose: Sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) is a black-blood 3D T1-weighted (T1w) magnetic resonance imaging (MRI) sequence that has shown robust performance for brain metastases detection. However, this could generate false positive results due to suboptimal blood signal suppression. For that reason, SPACE is used in our institution alongside a non-black-blood T1w sequence: volumetric interpolated breath-hold examination (VIBE). Our study aims to (i) evaluate the diagnostic accuracy of SPACE compared to its use in combination with VIBE, (ii) investigate the effect of radiologist's experience in the sequence's performance, and (iii) analyze causes of discordants results.
Methods: Four hundred seventy-three 3T MRI scans were retrospectively analyzed following a monocentric study design. Two studies were formed: one including SPACE alone and one combining both sequences (SPACE + VIBE, the reference). An experienced neuroradiologist and a radiology trainee independently reviewed the images of each study and reported the number of brain metastases. The sensitivity (Se) and specificity (Sp) of SPACE compared to SPACE + VIBE in metastases detection were reported. Diagnostic accuracy of SPACE compared to SPACE + VIBE was assessed by using McNemar's test. Significance was set at p < 0.05. Cohen's kappa was used for inter-method and inter-observer variability.
Results: No significant difference was found between the two methods, with SPACE having a Se > 93% and a Sp > 87%. No effect of readers' experience was disclosed.
Conclusion: Independently of radiologist's experience, SPACE alone is robust enough to replace SPACE + VIBE for brain metastases detection.
Keywords: Black-blood; Brain metastases; Contrast enhancement; Magnetization transfer contrast; T1-weighted sequence; Vessel suppression.
© 2023. The Author(s).