As a common oxidizer, ammonium perchlorate (AP) is an important component in composite solid propellants (CSPs). Ferrocene (Fc)-based compounds are often selected as burning rate catalysts (BRCs) to catalyze AP decomposition owing to their excellent catalytic behavior. However, one of the drawbacks of Fc-based BRCs is migration in CSPs. In this study, five Fc-terminated dendrimers are designed and synthesized to improve the anti-migration properties, and their chemical structures are confirmed systemically by the related spectra characterization techniques. Moreover, the redox performance, catalytic effect on AP decomposition, combustion performance, and mechanical properties in CSPs are also studied. The shapes of the prepared propellant samples are observed via scanning electron microscopy. The obtained Fc-based BRCs have good redox performance, a positive effect on promoting AP decomposition, excellent combustion catalytic performance, and good mechanical properties. Meanwhile, they have a higher anti-migration ability than catocene (Cat) and Fc. This study demonstrates that Fc-terminated dendrimers have great potential to be applied as anti-migration BRCs in CSPs.
Keywords: ammonium perchlorate; anti-migration; burning rate catalysts; catalytic effects; composite solid propellants.
© 2023 Wiley-VCH GmbH.