A segmentation-based method improving the performance of N4 bias field correction on T2weighted MR imaging data of the prostate

Magn Reson Imaging. 2023 Sep:101:1-12. doi: 10.1016/j.mri.2023.03.012. Epub 2023 Mar 31.

Abstract

Magnetic Resonance (MR) images suffer from spatial inhomogeneity, known as bias field corruption. The N4ITK filter is a state-of-the-art method used for correcting the bias field to optimize MR-based quantification. In this study, a novel approach is presented to quantitatively evaluate the performance of N4 bias field correction for pelvic prostate imaging. An exploratory analysis, regarding the different values of convergence threshold, shrink factor, fitting level, number of iterations and use of mask, is performed to quantify the performance of N4 filter in pelvic MR images. The performance of a total of 240 different N4 configurations is examined using the Full Width at Half Maximum (FWHM) of the segmented periprostatic fat distribution as evaluation metric. Phantom T2weighted images were used to assess the performance of N4 for a uniform test tissue mimicking material, excluding factors such as patient related susceptibility and anatomy heterogeneity. Moreover, 89 and 204 T2weighted patient images from two public datasets acquired by scanners with a combined surface and endorectal coil at 1.5 T and a surface coil at 3 T, respectively, were utilized and corrected with a variable set of N4 parameters. Furthermore, two external public datasets were used to validate the performance of the N4 filter in T2weighted patient images acquired by various scanning conditions with different magnetic field strengths and coils. The results show that the set of N4 parameters, converging to optimal representations of fat in the image, were: convergence threshold 0.001, shrink factor 2, fitting level 6, number of iterations 100 and the use of default mask for prostate images acquired by a combined surface and endorectal coil at both 1.5 T and 3 T. The corresponding optimal N4 configuration for MR prostate images acquired by a surface coil at 1.5 T or 3 T was: convergence threshold 0.001, shrink factor 2, fitting level 5, number of iterations 25 and the use of default mask. Hence, periprostatic fat segmentation can be used to define the optimal settings for achieving T2weighted prostate images free from bias field corruption to provide robust input for further analysis.

Keywords: Full width at half maximum; N4 bias field correction; Periprostatic fat segmentation; Prostate imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bias
  • Humans
  • Image Processing, Computer-Assisted* / methods
  • Magnetic Resonance Imaging / methods
  • Male
  • Phantoms, Imaging
  • Prostate* / pathology